DETEKSI TEPI UNTUK VALIDASI MODEL TIGA DIMENSI TULANG PANGGUL PADA PERENCANAAN DESAIN IMPLAN

Talitha Asmaria, Rafidah Rahmi, Muhammad Satrio Utomo, Dhyah Annur, Daniel Panghihutan Malau, Muhamad Ikhlasul Amal, Ika Kartika

Abstract


In the process of implant design and fabrication planning, the anatomical background of human bone is an important aspect to determine the accuracy of implant design. To help in understanding the human bone anatomy, replicas of human bone can be reconstructed using three-dimensional (3D) printing technology. This study aims to validate the digital model of human bone and the imaging data of human bone in order to have an appropriate recommendation for designing the total hip replacement (THR). Achieved data from computed tomography scanning (CT-Scan) modality was deciphered to build the digital 3D model human bone. The bone and the digital 3D model of bone were captured to be two-dimensional(2D) data in the same dimension and processed using the algorithm of edge detection. The images from the edge detection process were processed for finding the similarity of the images. The percentage of similarity, precision, and  accuracy between the bone and the digital 3D model have been validated and can be used as a reference in the THR designs.

Keywords


Implant; Femur bone; Validation 3-D model; Edge detection

Full Text:

References


Asmaria, T., Annur, D., Utomo, M.S., Sari, A.K, Malau, D.P., Prabowo, Y., Rahyussalim, A.J., Amal, M.I., Validation of 3D Models using Template Matching for Implant Planning. 2019. 16th International Conference on Quality in Research: Symposium on Electrical and Computer Engineering. IEEE.

Baharuddin, M. Y., Salleh, S. H., Zulkifly, A. H., Lee, M. H., Noor, A. M. 2014. Morphological Study of the Newly Designed Cementless Femoral Stem. BioMed Research International.

Brouwers, L., Teutelink, A., Tilborg, F. A. J. B. V., Jongh, M. A. C. D., Lansink, K. W. W., Bemelman, M., 2018. Validation study of 3D-printed anatomical models using 2 PLA printers for preoperative planning in trauma surgery, a human cadaver study. European Journal of Trauma and Emergency Surgery. p. 1-8.

Choi, J. -Y., Choi, J. -H., Kim, N. -K., Kim, Y., Lee, J. -K., Kim, M.-K., Lee, J. -H., Kim, M. -J., 2002, Analysis of errors in medical rapid prototyping models. International Journal of Oral and Maxillofacial Surgery 31(1). p. 23-32.

Fang, C., Cai, H., Kuong, E., Chui, E., Siu, Y. C., Ji, T., Drstvenšek, I. 2019. Surgical applications of three-dimensional printing in the pelvis and acetabulum: from models and tools to implants. Der Unfallchirurg 122(4). p. 278-285.

Lecerf, G., Fessy, M. H., Philippot, R., Massin, P., Giraud, F., Flecher, X., Girard, J., Mertl, P., Marchetti, E., Stindel, E. 2009. Femoral offset: Anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthopaedics & Traumatology: Surgery & Research 95(3). p. 210-219

Malik. S. S, Malik S. S. 2015. Orthopaedics Biomechanics Made Easy. Cambridge University Press.

Malpree, T., Bergers, D., 2009. Accuracy of RP Model. Rapid Prototyping Journal 15(5). p. 325-322.

Mei, X., Zheng, Z., Bingrong, W., Guo, L., 2009. The Edge Detection of Tumor Brain. International Conference on Communications, Circuits, and Systems. IEEE. p.477-479.

Mirza, S. B., Dunlop, D. G., Panesar, S. S., Naqvi, S. G., Ganogo, S., Salih, S. 2010. Basic Science Consideration in Primary Total Hip Replacement Arthroplasty. The Open Orthopaedics Journal (4). p. 169-180.

Odeh, M., Levin, D., Inziello, J., Fenoglietto, F. L., Mathur, M., Hermsen, J., Stubbs, J., Ripley, B., 2019. Methods for verification of 3D printed anatomic model accuracy using cardiac models as an example. 3D Printing in Medicine 5(6).

Porion, P., Sommier, N., Faugere, A.M., Evesque, P. 2004. Dynamics of size segregation and mixing of granular materials in a 3D-blender by NMR imaging investigation. Powder Technology 141(2). p. 55-68.

Rajab, M. I., Woolfson, M. S., Morgan, S. P., 2004. Application of region-based segmentation and neural network edge detection to skin lesions. Computerized Medical Imaging and Graphics 28(1-2). p.61-68.

Rawal, B. R., Riberio, R., Malhotra, R. 2012. Anthropometric measurements to design best-fit femoral stem for the Indian population. Indian Journal of Orthopedics 46(1). p. 46-53.

Rengier, F., Mehndiratta, A., Tengg-Kobligk, H. V., Zechmann, C.M., Unterhinninghofen R., Kauczor H.U., Giesel, F. L., 2010. 3D printing based on imaging data: review of medical applications. International Journal of Computer Assisted Radiology and Surgery 5(4). p. 335-341.

Rosset, A., Spadola, L., Ratib, O. 2004. OsiriX: an open-source software for navigating in multidimensional DICOM images. Journal of Digital Imaging 17(3). p. 205-216

Rulaningtyas, R. Dan Ain, K., 2009. Edge detection for brain tumor pattern recognition. International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009. IEEE.

Yang, Z., Jian, W., Zhi-Han, L., Jun, X., Liang, Z., Ge, Y., Zhan-Jun, S. 2014. The Geometry of the Bone Structure Associated with Total Hip Arthroplasty. PloS one 9(3). e91508.

Wang, Z. Dan Sai-Xian, He. 2004. An Adaptive Edge-detection Method Based on Canny Algorithm. Journal of Image and Graphics 8(9). p. 957-962.

Witowski, J., Wake, N., Grochowska, A., Sun, Z., Budzyński, A., Major, P., Popiela, T. J., Pędziwiatr, M. 2019. Investigating accuracy of 3D printed liver models with computed tomography. Quantitative imaging in medicine and surgery 9(1). p. 43-52.




DOI: http://dx.doi.org/10.14203/widyariset.6.1.2020.51-61

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Widyariset

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Indexed by :