Susiana Melanie, Diini Fithriani


Oil derived from microalga has a big potential to substitute fossil fuel so that the oil extraction method needs to be developed. This study aims to compare the method for cell disruption in oil extraction of Spirulina sp. and
Chlorella sp. microalgae. Spirulina sp. and Chlorella sp. were cultivated each in a pond with maximum capacity of 600 liters at Biotechnology Laboratory of Research and Development Center for Marine and Fisheries Product Processing and Biotechnology. Spirulina sp. were harvested by filtered it using satin. Chlorella sp. was harvested using coagulant NaOH, so it was needed to be neutralized to pH 7 with citric acid addition. The cell wall of Spirulina sp. and Chlorella sp. then was ruptured using sonicator and microwave, while other sample without disruption as control. The suspension then was macerated with n-hexane solvent, to extract the oil content. Oil content of Spirulina sp. which has been collected from this experiment gave result control: microwave: sonicator as 1.17%, 1.28%, and 1.97% respectively. Meanwhile, oil content of Chlorella sp. gave result from control, microwave, and sonicator as 0.93%, 1.20%, and 1.69% respectively. It was concluded that sonicator is the best method in oil extraction of cultured microalgae.


Microalgae; Spirulina sp.; Chlorella sp.; Disruption technic; Cell wall; Oil extraction

Full Text:


Chisti, Y., 2007. Biodiesel from microalgae. Bioethanol Adv. 25, 294–306.

Scarsella, M., G. Belotti, P. DeFilippis, M. Bravi, 2010. Study on the optimal growing conditions of Chlorella vulgaris in bubble column photobioreactors. Proceedings of Industrial Biotechnology 2nd International Conference.

Padua, Italia: The Italian Association of Chemical Engineering - Biotech Working Group (AIDIC).

Benemann, J.R., J.C. Weissman, B.L. Koopman, W.J. Oswald, 1977. Energy production by microbial photosynthesis. Nature268: 19–23.

Milne, T.A., R.J. Evans, N. Nagle, 1990. Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape-selective zeolites. Biomass21: 219–232

Borowitzka, M.A. 1992. Fats, oils and hydrocarbons. Micro-algal Biotechnology. Section The Algae. Cambridge Univ. Press. p.257–287.

Lee, J.Y., C. Yoo, S.Y. Jun, C.Y. Ahn, H.M. Oh, 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 101:575–577.

Magota, A., K. Saga, S. Okada, S. Atobe, K. Imou, 2012. Effect of thermal pretreatments on hydrocarbon recovery from Botryococcus braunii. Bioresource Technology. 123:195-198.

Mendes-Pinto, M.M., M.F.J. Raposo, J. Bowen, A.J. Young, R. Morais, 2001. Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J. Appl. Phycol. 13:19–24.

Molina Grima, E., E.H. Belarbi, F.G. Acien Fernandez, Robles A. Medina, Y. Chisti, 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20:491–515.

Ehimen, E., Z. Sun, C. Carrington, 2010. Variables affecting the in situ transesterification of microalgae lipids. Fuel89(3): 677–684.

Wahlen, B.D., R.M. Willis, L.C. Seefeldt, 2011. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae,

cyanobacteria, and wild mixed-cultures. Bioresour. Technol. 102(3):2724–2730.

Blumreisinger, M., D. Meindl, E. Loos, 1983. Cell Wall Composition of Chlorococcal Algae. Phytochemistry22(7): 1603–1604.

Amini, S., S. Melanie, dan D. Fithriani, 2014. Kandungan minyak mikroalgae dari jenis Chlorella sp. yang ditumbuhkan pada media

air laut dan air tawar. Yogyakarta: Prosiding Seminar Nasional Tahunan XI Hasil Penelitian Perikanan dan Kelautan Universitas Gadjah Mada.

Lananan. F., A. Jusoh, N. Ali, S. S. Lam, A. Endut, 2013. Effect of Conway Medium and f/2 Medium on the growth of six genera of South China Sea marine microalgae. Bioresource Technology141: 75–82.

Amini, S., 2004. Pengaruh umur ganggang halus laut jenis Chlorella sp.dan Dunaliella sp. terhadap pigmen klorofil dan karotenoid sebagai bahan baku makanan kesehatan. Seminar Nasional & Temu Usaha, Fakultas Pertanian Universitas Sahid, Jakarta. p229 – 238.

Oh-Hama, T. & S. Miyachi, 1992. Chlorella: Micro-Algal Biotechnology, Edited by M. A. Borowitzka and L. J. Borowitzka Cambridge. Univ. Press.

Nursid, M., S. Amini, Sugiyono, E. Chasanah, I. Januar, D. Fithriani, 2013. Mikroalga Sebagai Bahan Baku Biofuel. Laporan Teknis Penelitian Bahan Bioaktif Bersumber dari Makroalga dan Mikroalga, Balai Besar Penelitian dan Pengembangan Pengolahan Produk dan Bioteknologi Kelautan dan Perikanan. Jakarta: Kementerian Kelautan dan Perikanan.

Mirshekari, S., D. Arabian, R. Khalilzadeh, F. Abaspour, 2014. Investigation of different microalgae cell disruption methods. Proceedings of 15th International Congress of Microbiology. Tehran, Iran: Iranian Society of


Shen, Y., Z. Pei, W. Yuan, E. Mao, 2009. Effect of nitrogen and extraction method on algae lipid yield. Int J Agric & Biol Eng., 2(1): 51–57.

Lamers, P.P., M. Janssen, R.C.H. De Vos, R.J. Bino, R.H. Wijffels, 2012. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella

salina, a unicellular green microalga. Journal of Biotechnology162(1):21–27.

Assunção, P. R.Jaén-Molina, J. Caujapé-Castells, A. de la Jara, L. Carmona, K. Freijanes, H. Mendoza, 2012. Molecular taxonomy of

Dunaliella (Chlorophyceae), with a special focus on D. salina: ITS2 sequences revisited with an extensive geographical sampling. Aquatic Biosystems8(1).

Bouterfas, R., M. Belkoura, A. Dauta, 2006. The effects of irradiance and photoperiod on the growth rate of three freshwater green algae isolated from a eutrophic lake. Limnetica, 25(3): 647–656.

Stolte, W., R. Riegman, 1996. A model approach for size-selective competition of marine phytoplankton for fluctuating nitrate and ammonium. J. Phycol., 32(5): 732–740.

Neto, A. M. P., R. A. S. de Souza, A. D. Leon-Nino, J. D. A. da Costa, R. S. Tiburcio, T. A. Nunes, T. C. S. de Mello, F. T. Kanemoto, F. M. P. Saldanha-Corrêa, S. M. F. Gianesella, 2013. Improvement in microalgae lipid extraction using a sonication-assisted method. Renewable Energy 55: 525–531.

Safi, C., C. Frances, A. V. Ursu, C. Laroche, C. Pouzet, C. Vaca-Garcia, P. Y. Pontalier, 2015. Understanding the effect of cell disruption methods on the diffusion of Chlorella vulgaris proteins and pigments in the aqueous

phase. Algal Research, 8: 61–68.

Falquet, J. and J. P. Hurni, 2006. The Nutritional Aspects of Spirulina. Switzerland: Antenna Technologies. 25 p.

Liu, Z.Y., G.C. Wang, B.C. Zhou, 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99: 17–22.

Illman, A.M., A.H. Scragg, S.W. Shales, 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27:631–5.

Macedo, R.V.T., R.M. Alegre, 2001. Influeˆncia do Teor de Nitrogeˆnio no Cultivo de Spirulina Maxima em Dois Nı´veis de Temperatura – Parte II. Produc¸a˜o de Lipı´dios Cieˆnc Tecnol Aliment Campinas, 21(2):183–186.

Widjaja, A., Chien, C.-C., Ju, Y.-H., 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng., 40: 13–20.



  • There are currently no refbacks.

Copyright (c) 2016 Widyariset

Indexed by :