INFLUENCE OF CARBON AND NITROGEN ADDITION ON THE CORROSION RESISTANCE OF Co-28Cr-6Mo-0,8Si-0,8Mn-0,4Fe-0,2Ni ALLOYS

Fendy Rokhmanto, Cahya Sutowo, Ika Kartika

Abstract


Cobalt alloys is one of the implant materials that is used in orthopedic and dentistry, because of its biocompatibility, good mechanical properties, and high corrosion resistance. The mechanical properties and corrosion resistance can be enhanced by thermomechanical treatment and addition of alloying element. Carbon and nitrogen were added to enhance mechanical properties and high corrosion resistance. Effect of carbon variation and nitrogen to the corrosion resistance in Co-Cr-Mo (CCM) alloys were measured by corrosion measurement system (CMS) device in Hank’s Solutions after thermomechanical treatment process. Corrosion rate of Co-Cr-Mo alloys with carbon variation dropped to 5.8 x 10-4 mmpy and 5.2 x 10-4 mmpy with carbon variation and nitrogen. Decreasing corrosion rate indicated that the corrosion resistance of alloys is increased with the addition of carbon and nitrogen.


Keywords


Co-Cr-Mo alloys; Carbon; Nitrogen; Corrosion rate; Corrosion resistance

Full Text:

References


Aung, Naing Naing, and Wei Zhou. 2010. “Effect of Grain Size and Twins on Corrosion Behaviour of AZ31B Magnesium Alloy.” Corrosion Science 52 (2). Elsevier Ltd: 589–94. doi:10.1016/j.corsci.2009.10.018.

Codaro, E N, P Melnikov, I Ramires, and A C Guastaldi. 2000. “Corrosion Behavior of a Cobalt-Chromium-Molybdenum Alloy * L.” Russian Journal of Electrochemistry 36 (10): 1263–67.

Company, Mobil Technology. 2002. “Corrosion Forms and Twinning in Zeolite ZSM -5 Crystals” 5 (7).

Davis, Joseph R. 2000. ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys. Uses of Nickel. doi:10.1361/ncta2000p013.

Davis, JR. 2003. “Handbook of Materials for Medical Devices.” ASM International, 205–16. doi:10.1361/hmmd2003p001.

Escobedo, José, Juan Méndez, Dora Cortés, Juan Gómez, Manuel Méndez, and Héctor Mancha. 1996. “Effect of Nitrogen on the Microstructure and Mechanical Properties of a CoCrMo Alloy.” Materials & Design 17 (2): 79–83. doi:10.1016/S0261-3069(96)00036-2.

Gurappa, I. 2002. “Characterization of Different Materials for Corrosion Resistance under Simulated Body Fluid Conditions.” Materials Characterization 49 (1): 73–79. doi:10.1016/S1044-5803(02)00320-0.

Hermawan, Hendra, Dadan Ramdan, and Joy R P Djuansjah. 2011. “Metals for Biomedical Applications.” Biomedical Engineering - From Theory to Applications.

Hiromoto, Sachiko, Emi Onodera, Akihiko Chiba, Katsuhiko Asami, and Takao Hanawa. 2005. “Microstructure and Corrosion Behaviour in Biological Environments of the New Forged Low-Ni Co-Cr-Mo Alloys.” Biomaterials 26 (24): 4912–23. doi:10.1016/j.biomaterials.2005.01.028.

Kannan, M. Bobby, R. K Singh Raman, S. Khoddam, and S. Liyanaarachchi. 2013. “Corrosion Behavior of Twinning-Induced Plasticity (TWIP) Steel.” Materials and Corrosion 64 (3): 231–35. doi:10.1002/maco.201106356.

Kurosu, Shingo, Naoyuki Nomura, and Akihiko Chiba. 2007. “Effect of Sigma Phase in Co-29Cr-6Mo Alloy on Corrosion and Mechanical Properties.” Advanced Materials Research 26–28 (8): 777–80. doi:10.4028/www.scientific.net/AMR.26-28.777.

Mineta, Shingo, Alfirano, Shigenobu Namba, Takashi Yoneda, Kyosuke Ueda, and Takayuki Narushima. 2012. “Precipitates in Biomedical Co-28Cr-6Mo-(0-0.41)C Alloys Heat-Treated at 1473 K to 1623 K (1200 C to 1350 C).” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 43 (9): 3351–58. doi:10.1007/s11661-012-1142-4.

———. 2013. “Phase and Formation/dissolution of Precipitates in Biomedical Co-Cr-Mo Alloys with Nitrogen Addition.” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 44 (1): 494–503. doi:10.1007/s11661-012-1399-7.

Narushima, T., S. Mineta, Shigenobu Namba, Takashi Yoneda, and Kyosuke Ueda. 2011. “Precipitates in Biomedical Co−Cr−Mo−C-Si-Mn Alloys.” Advanced Materials Research 277: 51–58. doi:10.4028/www.scientific.net/AMR.277.51.

Narushima, Takayuki, Shingo Mineta, Yuto Kurihara, and Kyosuke Ueda. 2013. “Precipitates in Biomedical Co-Cr Alloys.” Jom 65 (4): 489–504. doi:10.1007/s11837-013-0567-6.

Niinomi, Mitsuo, Masaaki Nakai, and Junko Hieda. 2012. “Development of New Metallic Alloys for Biomedical Applications.” Acta Biomaterialia 8 (11). Acta Materialia Inc.: 3888–3903. doi:10.1016/j.actbio.2012.06.037.

Peppas, Nicholas A. 2000. Handbook of Biomaterial Properties. Journal of Controlled Release. Vol. 65. doi:10.1016/S0168-3659(99)00208-4.

Society, The Electrochemical. 2008. “Corrosion of Metallic Biomaterials in Cell Culture Environments.” Electrochemical Society Interface, 41–44.

Yamanaka, Kenta, Manami Mori, and Akihiko Chiba. 2014. “Effects of Nitrogen Addition on Microstructure and Mechanical Behavior of Biomedical Co-Cr-Mo Alloys.” Journal of the Mechanical Behavior of Biomedical Materials 29. Elsevier: 417–26. doi:10.1016/j.jmbbm.2013.10.006.

Zhang, Xiaoqing, Yunping Li, Ning Tang, Emi Onodera, and Akihiko Chiba. 2014. “Corrosion Behaviour of CoCrMo Alloys in 2 Wt% Sulphuric Acid Solution.” Electrochimica Acta 125. Elsevier Ltd:543–55.doi:10.1016/j.electacta.2014.01.143.




DOI: http://dx.doi.org/10.14203/widyariset.4.1.2018.1-8

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Widyariset

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Indexed by :