THERMOMECHANICAL TREATMENT PROCESS OF α/βTi-6Al-6Mo ALLOY AS NEW ALTERNATIVE MATERIALS FOR BIOMEDICAL APPLICATION

Cahya Sutowo, Fendy Rokhmanto, Galih Senopati

Abstract


Telah dilakukan proses pengecoran paduan Ti-6Al-6Mo menggunakan arc remelting furnace dan dilanjutkan dengan proses perlakuan termomekanik berupa homogenisasi dan pengerolan panas pada temperatur 900, 1000, dan 1100 °C. Pelat Ti-6Al-6Mo hasil pengerolan panas dikarakterisasi menggunakan mikroskop optik dan mikroskop elektron untuk mengidentifikasi struktur yang terbentuk, analisa pola difraksi sinar-x dilakukan untuk mengidentifikasi fasa yang terbentuk, dan uji keras dengan metode rockwell dilakukan untuk mengetahui harga kekerasan pelat Ti-6Al-6Mo. Struktur mikro hasil pengerolan berupa struktur titanium α dan tititanium β terdeformasi. Fasa titanium α dan titanium β juga teridentifikasi pada grafik pola difraksi sinar-x. Hasil pengujian kekerasan menunjukkan kekerasan tertinggi dicapai pada pengerolan pada temperatur 1100 °C.

Keywords


Ti-6Al-6Mo; Arc Remelting Furnace; Thermomechanical processing; Hot rolled

Full Text:

References


Cardoso, Flavia F., Peterson L. Ferrandini, Eder S.N. Lopes, Alessandra Cremasco, and Rubens Caram. 2014. “Ti–Mo Alloys Employed as Biomaterials: Effects of Composition and Aging Heat Treatment on Microstructure and Mechanical Behavior.” Journal of the Mechanical Behavior of Biomedical Materials 32 (April). Elsevier: 31–38. doi:10.1016/j.jmbbm.2013.11.021.

Kent, Damon, Gui Wang, and Matthew Dargusch. 2013. “Effects of Phase Stability and Processing on the Mechanical Properties of Ti-Nb Based β Ti Alloys.” Journal of the Mechanical Behavior of Biomedical Materials 28 (December). Elsevier: 15–25. doi:10.1016/j.jmbbm.2013.07.007.

Kumar, Anoop, T Raghu, and S Rajesham. 2012. “Influences of Temperature of Thermo Mechanical Working on Hardness of Titanium Alloy” 585: 381–86. doi:10.4028/www.scientific.net/AMR.585.381.

Lütjering, G. 1998. “Influence of Processing on Microstructure and Mechanical Properties of (Α+β) Titanium Alloys.” Materials Science and Engineering: A 243 (1): 32–45. doi:10.1016/S0921-5093(97)00778-8.

Marsumi, Yuswono, and Andika Widya Pramono. 2014. “Influence of Niobium or Molybdenum in Titanium Alloy for Permanent Implant Application.” Advanced Materials Research 900 (February): 53–63. doi:10.4028/www.scientific.net/AMR.900.53.

Niinomi, Mitsuo, Masaaki Nakai, and Junko Hieda. 2012. “Development of New Metallic Alloys for Biomedical Applications.” Acta Biomaterialia 8 (11). Acta Materialia Inc.: 3888–3903. doi:10.1016/j.actbio.2012.06.037.

Park, Joon Boo. 1984. Biomaterials Science and Engineering. New York: PLENUM PRESS. doi:0.1007/978-1-4613-2769-1.

Ribeiro, Ana Lúcia Roselino, Rubens Caram Junior, Flávia Farias Cardoso, Romeu Belon Fernandes Filho, and Luís Geraldo Vaz. 2009. “Mechanical, Physical, and Chemical Characterization of Ti-35Nb-5Zr and Ti-35Nb-10Zr Casting Alloys.” Journal of Materials Science: Materials in Medicine 20 (8): 1629–36. doi:10.1007/s10856-009-3737-x.

Senopati, Galih, Cahya Sutowo, I. Nyoman Gede P. A., Edy Priyanto Utomo, and M. Ikhlasul Amal. 2016. “Microstructure and Mechanical Properties of as-Cast Ti-Mo-xCr Alloy for Biomedical Application” 050005: 050005. doi:10.1063/1.4941631.

Xu, Li Juan, Shu Long Xiao, Jing Tian, and Yu Yong Chen. 2013. “Microstructure, Mechanical Properties and Dry Wear Resistance of β-Type Ti-15Mo-xNb Alloys for Biomedical Applications.” Transactions of Nonferrous Metals Society of China (English Edition) 23 (3). The Nonferrous Metals Society of China: 692–98. doi:10.1016/S1003-6326(13)62518-2.




DOI: http://dx.doi.org/10.14203/widyariset.3.1.2017.47-54

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Widyariset

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Indexed by :