Yustisi Ardhitasari Lumban-Gaol, Nadya Oktaviani, Prayudha Hartanto, Ibnu Sofian


Indonesia is an archipelago country where 77% of its territory is waters. National marine mapping has been carried out based on depth measurement data obtained using echosounders. However, this method requires a lot of time and cost. One solution to provide Indonesian bathymetry data is by utilizing altimetry satellite data to model the bathymetry of the seafloor. This study aims to evaluate bathymetric model generated from three combinations of five altimetry satellites in shallow and deep seas. We use least square collocation gravity anomaly and geological gravity for bathymetry modeling. The results of the model show variations in deviations with sounding data available at the Geospatial Information Agency (BIG). The resulting residual trend differs between shallow and deep sea. The optimum results in shallow area is obtained by the combination of Cryosat-2, Jason-1/C, and SARAL while in deep area is obtained by the combination of ERS-1/E-F and Geosat GM. In general, the bathymetry model produced in this study has a similar profile with the sounding data.


Altimetri; Anomali gayaberat; Batimetri; Least square collocation; Gravity geological model

Full Text:


Andersen, O. B. (2013). Marine Gravity and Geoid from Satellite Altimetry. In Geoid Determination (pp. 401–451). https://doi.org/10.1007/978-3-540-74700-0

Bhattacharyya, R., & Majumdar, T. J. (2006). Residual geoid and free-air gravity over the Indian offshore from ERS-1 high resolution altimeter data. Journal of the Indian Society of Remote Sensing, 34(3), 289–298. https://doi.org/10.1007/BF02990657

Calmant, S., & Baudry, N. (1996). Modelling bathymetry by inverting satellite altimetry data: A review. Marine Geophysical Researches, 18(2–4), 123–134. https://doi.org/10.1007/BF00286073

Charette, M. A., & Smith, W. H. F. (2010). The Volume of Earth’s Ocean. Journal of The Oceanography Society, 23(2), 112–114.

Cipollini, P., & Snaith, H. (2015). A short course on Altimetry. Retrieved February 1, 2018, from Esa website: ftp://ftp.ifremer.fr/ifremer/cersat/OTC2015/

DTU. (2018). DTU Space National Space Institute. Retrieved from ftp://ftp.space.dtu.dk/pub/DTU10/1_MIN/

Hartanto, P., Huda, S., Putra, W., Variandy, E. D., Triarahmadhana, B., Pangastuti, D., … Hwang, C. (2018). Estimation of marine gravity anomaly model from satellite altimetry data (Case Study : Kalimantan and Sulawesi Waters-Indonesia). IOP Conference Series: Earth and Environmental Science, 162(1). https://doi.org/10.1088/1755-1315/162/1/012038

Hell, B., & Jakobsson, M. (2011). Gridding heterogeneous bathymetric data sets with stacked continuous curvature splines in tension. Marine Geophysical Research, 32(4), 493–501. https://doi.org/10.1007/s11001-011-9141-1

Hsiao, Y., Kim, J. W., Kim, K. B., Lee, B. Y., & Hwang, C. (2011). Bathymetry Estimation Using the Gravity-Geologic Method : An Investigation of Density Contrast Predicted by the Downward Continuation Method. 22(3), 347–358. https://doi.org/10.3319/TAO.2010.10.13.01(Oc)1.

Hsiao, Y. S., Hwang, C., Cheng, Y. S., Chen, L. C., Hsu, H. J., Tsai, J. H., … Kao, Y. C. (2016). High-resolution depth and coastline over major atolls of South China Sea from satellite altimetry and imagery. Remote Sensing of Environment, 176, 69–83. https://doi.org/10.1016/j.rse.2016.01.016

Hwang, C., & Parsons, B. (1996). An optimal procedure for deriving marine gravity from multi-satellite altimetry. Geophysical Journal International, 125(3), 705–718. https://doi.org/10.1111/j.1365-246X.1996.tb06018.x

Jekeli, C. (1999). An analysis of vertical deflections derived from high-degree spherical harmonic models. Journal of Geodesy, 73(1), 10–22. https://doi.org/10.1007/s001900050213

Kim, J. W., von Frese, R. R. B., Lee, B. Y., Roman, D. R., & Doh, S. J. (2011). Altimetry-derived gravity predictions of bathymetry by the gravity-geologic method. Pure and Applied Geophysics, 168(5), 815–826. https://doi.org/10.1007/s00024-010-0170-5

Musthafa, W. N. (2014). Pemanfaatan Satelit Altimetri Untuk Estimasi Batimetri. Institut Teknologi Bandung.

Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., & Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205), 65–67. https://doi.org/10.1126/science.1258213

Smith, W. H. F., & Sandwell, D. T. (1997). Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334), 1956–1962. https://doi.org/10.1126/science.277.5334.1956

Smith, W. H. F., Sandwell, D. T., & Raney, R. K. (2005). Bathymetry from satellite altimetry: Present and future. Proceedings of MTS/IEEE OCEANS, 2005, 2005. https://doi.org/10.1109/OCEANS.2005.1640160

Smith, W., & Sandwell, D. (2004). Conventional Bathymetry, Bathymetry from Space, and Geodetic Altimetry. Oceanography, 17(1), 8–23. https://doi.org/10.5670/oceanog.2004.63

DOI: http://dx.doi.org/10.14203/widyariset.6.2.2020.75-87


  • There are currently no refbacks.

Copyright (c) 2020 Widyariset

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Indexed by :